If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+6y-3=0
a = 4; b = 6; c = -3;
Δ = b2-4ac
Δ = 62-4·4·(-3)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{21}}{2*4}=\frac{-6-2\sqrt{21}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{21}}{2*4}=\frac{-6+2\sqrt{21}}{8} $
| 3.1+10m=6.68 | | X+1/x=7/2 | | 7-5x=3x2 | | -(6y+7)-(-5y-8)=-2 | | 22=1/2(6)(2x+3x) | | 2.8+10m=7.67 | | -4y+4=6+9y | | -3b^2+78b+117=0 | | 22=1/26(3x+2x) | | 11x+9=6x-9 | | (3x-1)+(x+3)=90 | | (3x+1)+(x+3)=90 | | x+40x=90 | | 7x-24+x+44=180 | | 162=8+7(1+7x) | | 22/49=7a/28 | | 3x+1=(8x-2)-(4x+6) | | 4/5m=25 | | 2/4m=1/4 | | 96*2x=80-3x | | 8x-7=8x-7+3x+10 | | 3y-13+y+15=90 | | 0.2x+1.6=1.4x+1.5 | | -9/10x=7 | | 3(-2y+9)=57 | | 21{2-x}+12x=14 | | 5+8(q+4)=2(q+1) | | 192^2=1/2b12 | | 3y+9y/5=2y+6 | | 3(x-8)=9x+18 | | 0.75x=0.625+x | | 3y(y+3)/5=2y+6 |